Flavor-Changing at Large $\tan \beta$

Chris Kolda

U. Notre Dame

References:

K.S. Babu and C. Kolda, Phys. Rev. Lett. 84, 228 (2000)

K.S. Babu and C. Kolda, hep-ph/0206310, submitted to PRL

C. Kolda and J. Lennon, hep-ph/0209xxx.

Related Talks:

Nierste, Ko

Conclusions:

- \rightarrow Within the MSSM, certain classes of FCNC's (e.g. $B \rightarrow \mu\mu$, $\tau \rightarrow 3\mu$) can be mediated by neutral Higgs boson exchange.
- These FCNC's can be large and may be detected before the LHC turns on, and even if SUSY partners are unseen; BR's scale as $\tan^6 \beta!$
- These FCNC's decouple differently than all other SUSY-induced FCNC's and are not appreciably constrained by meson-anti-meson mixing amplitudes.
- → These FCNC's may provide important clues about method of communicating SUSY-breaking even before we see a single superpartner!

We usually think of the MSSM as:

But in some limits it is really better to think like:

Why are there Higgs-induced FCNC's in the MSSM?

The MSSM is a type-II two Higgs doublet model.

Separate Higgs doublets give masses to each type (u, d) of quark so that Higgs couplings are always $\propto m_q$. \rightarrow No Fenc.

$$W = Q \mathbf{Y}_{u} U H_{u} + Q \mathbf{Y}_{d} D H_{d} + \cdots$$
 Generally weights

The MSSM is not a type-II model.

Type-II models are protected from dangerous QuH_d^* and QdH_u^* couplings by a parity: $H_u \to H_u$ while $H_d \to -H_d$.

But...
$$W = \cdots + \mu H_u H_d$$

In MSSM, parity broken by μ -terms.

- The MSSM is a type-II model.
 SUSY doesn't need a parity to protect against dangerous couplings it has holomorphy!
- The MSSM really isn't a type-II model.
 Once SUSY is broken, holomorphy fails. Without a parity, nothing to protect against dangerous couplings.
 Clearly, dangerous operators must scale as ~ μM_{SUSY}.

OLD NEWS: cf. footnote in "Higgs Hunter's Quide

SLIGHTLY MORE DETAILS ..

Do the dangerous couplings get generated in real models?

In 1994, Hall, Rattazzi and Sarid examined weak scale corrections to Yukawa coupling unification. At large $\tan \beta$, biggest corrections to $y_{d,s,b}$ come from the QdH_u^* operator, generated by:

Even though the effect is formally 1-loop, LARGE $\tan \beta$ CAN OFFSET LOOP SUPPRESSION!

(Similar diagrams exist for δm_t but they are suppressed by $1/\tan \beta$.)

Shortly after, Blazek, Raby and Pokorski put in full flavor structure and showed that large corrections to CKM matrix could be generated.

HIGGS-MEDIATED FLAVOR-CHANGING NEUTRAL CURRENTS

Begin with the effective Lagrangian in interaction eigenbasis:

DIAGONALIZE UP SECTOR FIRST

- For universal-ish SUSY-breaking masses, $\epsilon_2(\tilde{C}) \simeq \pm \epsilon_g/4$.
- ϵ_1 and $\epsilon_2(\tilde{C})$ generated even for completely universal soft masses. (UNLIKE K-K, etc.)
- However non-universalities required to get $\epsilon_2(\tilde{g})$ are very generic. For GUT, typically $-1 \lesssim c \lesssim -\frac{1}{4}$.
- $\epsilon_2(\tilde{g})$ present even when A-terms are suppressed.

SPLITTING THIRD
GENERATION FROM
#1+2.

Keeping only y_b and y_t (and skipping lots of boring algebra)

Yukawas and CKM elements are shifted from their tree-level values:

$$V_{ub} \simeq V_{ub}^0 ~ rac{1+\epsilon_1 aneta}{1+(\epsilon_1+\epsilon_2y_t^2) aneta}$$
 Blazer, Rasy, Pokenski

- For $\epsilon_2 = 0$, no change in the CKM elements, corresponding to no new flavor-changing.
- But Yukawas/quark masses still shifted by non-zero ϵ_{\bullet} .

Effective FCNC Lagrangian:

$$\mathcal{L}_{FCNC} = \frac{\overline{m}_b V_{tb}^*}{\sqrt{2} v_d \sin \beta} \chi_{FC} \left[V_{td} \overline{b}_R d_L + V_{ts} \overline{b}_R s_L \right] \times \left(\cos(\beta - \alpha) h^0 - \sin(\beta - \alpha) H^0 + i A^0 \right) + h.c.$$

where

$$\chi_{FC} = rac{-\epsilon_2 y_t^2 an eta}{(1+\epsilon_1 an eta) \left[1+(\epsilon_1+\epsilon_2 y_t^2) an eta
ight]}$$

and all quarks are in mass eigenbasis.

- Check #1: as $\epsilon_2 \to 0$, $\mathcal{L}_{FCNC} \to 0$.
- Check #2: as $m_A \to \infty$, contribution of h^0 goes to zero. ($\kappa \to \beta \frac{\pi}{2}$)

We have generated a $b_R s_L \phi$ coupling. Where can it appear experimentally?

BABU, CX

Effective Hamiltonian:

$$\mathcal{H} = \frac{G_F}{\sqrt{2}} V_{td'}^* V_{tb} [C_{10} \mathcal{O}_{10} + C_{Q_1} Q_1 + C_{Q_2} Q_2] + \mathbf{h.c.}$$

with

$$\begin{array}{lll} \mathcal{O}_{10} & = & \frac{\alpha}{\pi}\overline{d_L'}\gamma^{\mu}b_L\,\bar{\ell}\gamma_{\mu}\gamma_{5}\ell \\ \\ Q_1 & = & -\frac{\alpha}{\pi}\overline{d_L'}b_R\bar{\ell}\ell \\ \\ Q_2 & = & -\frac{\alpha}{\pi}\overline{d_L'}b_R\bar{\ell}\gamma_{5}\ell \end{array} \begin{array}{c} \text{P-S operations,} \\ \text{No Helicity suppression.} \end{array}$$

where C_{10} is Standard Model and (LARGE TAND, LARGE MA)

$$C_{Q_1}\simeq C_{Q_2}\simeq rac{2\pi}{lpha}rac{m_bm_\ell}{m_A^2}\chi_{FC}^* an^2eta$$
 in large $aneta$ limit.

Then

$$\begin{aligned} \text{BR}(B_{d'} \to \ell \ell) &= \frac{G_F^2 \alpha^2 m_{B_d'}^3 \tau_{B_d'} f_{B_d'}^2}{64\pi^3} |V_{tb}^*|^2 \sqrt{1 - \frac{4m_\ell^2}{m_{B_d'}^2}} \\ &\times \left[\left(1 - \frac{4m_\ell^2}{m_{B_d'}^2} \right) \left| \frac{m_{B_d'}}{m_b + m_{d'}} C_{Q_1} \right|^2 + \left| \frac{2m_\ell}{m_{B_d'}} C_{10} - \frac{m_{B_d'}}{m_b + m_{d'}} C_{Q_2} \right|^2 \right] \end{aligned}$$

Absence of $B^0 - \overline{B}^0$ mixing potentially important. Most SUSY FCNC decays come from boxes:

But then there is also mixing:

But here

While

Thus absence of mixing does not imply absence of other FCNC signals!

Things you should know about $B \to \mu\mu$:

- In the Standard Model, $B(B_{d,s} \to \mu\mu) = 1.6 \times 10^{-10}$ and 4.3×10^{-9} (via GIM- and helicity-suppressed penguin)
- © Experimentally, $Br(B^0_{(d,s)} \to \mu\mu) < (6.8, 20) \times 10^{-7}$ at 90% CL (CDF)
- Relative factor of 3 from relative σ at Tevatron for $B_d:B_s$.
- But theory predicts $\Gamma_s/\Gamma_d = (V_{ts}/V_{td})^2 \simeq 25$, so signal in B_s first.
- With 2 fb⁻¹ of data in Run II, a bound of $(\frac{3}{4}-1) \times 10^{-7}$ can be obtained. Perhaps another order of magnitude when going to 15(30) fb⁻¹. (See Arnowitt 27 AL)
- ⇒ Lots of room for SUSY to be found at BR's above SM ...

GENERAL RESULTS

Simplest case: all SUSY masses degenerate

What are requirements on model for large $B \to \mu\mu$?

- $\stackrel{\checkmark}{\bullet}$ Large $\tan \beta$
- Small(ish) m_A
- Large μ
- Gauginos NOT much lighter than squarks

AND at least one of:

- lacksquare Large $A_t(m_Z)$
- lacktriangled Large $ilde{b}_L ilde{d}_L$ splitting/mixima

 $B \to \mu\mu$ does NOT decouple as $M_{\rm SUSY} \to \infty$, but as $m_A \to \infty$. This is unlike other rare processes $(b \to s\gamma)$ or $(g-2)_{\mu}$, for example). Thus there can never be perfect correlations between $B \to \mu\mu$ and other observables. However correlations can be found in specific models, such as the CMSSM.

Some sample models:

mSUGRA/CMSSM:

- Lots of running typically generates large $A_t(m_Z)$ and large squark splittings. (3)
- Defining $M_3 > 0$, then $sign(\epsilon_1)$ is $sign(\mu)$.
- IR pseudo-fixed point of A_t drives it negative, so $\operatorname{sign}(\epsilon_2(\tilde{C}))$ is $-\text{sign}(\mu)$. A81.
- Third generation squarks split to be lighter than first two generations. Thus $\operatorname{sign}(\epsilon_2(\tilde{g}))$ is $\operatorname{sign}(\mu)$. Thus gluino contribution usually interferes with chargino contribution.
- $B o \mu \mu$ maximized for $\mu < 0$ because of cancellations in denominator of χ_{FC} .
- But at large $\tan \beta$, mSUGRA models greatly prefer $\mu > 0$ to avoid large negative contributions to $(g-2)_{\mu}$.
- Still, for $\mu > 0$ and $\tan \beta \gtrsim 25$, range of Tevatron for finding $B \to \mu\mu$ larger than for finding trileptons.

SEE ALSO:

- · DEDES, DREINER, NIERSTE Ph/0108037 · HUANG, LIAO Ph/0201121
- · ARNOWITT, DUTTA, KAMON, TANARA Ph/0203069

BAEK, KO, SONG pl/0205259

BAER, BALAZS, BELYAEV, MIZURISHI, THTA YANG Ph/0205 325

GMSB:

- Predicts $A \simeq 0$ at messenger scale M
- Predicts $m_{\tilde{d}} = m_{\tilde{s}} = m_{\tilde{b}}$ also at M
- If M is low, then running has no chance to generate A-terms or squark splittings.

Generic GMSB models DO NOT predict much of a $B \to \mu\mu$ signal beyond the Standard Model.

- Conditions for a signal:
 - 1. Large messenger scale M to generate lots of running helps, since running generates A-terms and mass splittings.
 - 2. Large N (# of messengers) helps a little by increasing $M_{\rm gaugino}$ w.r.t. $M_{\rm scalar}$.

Back et al find that if Run II sees $B \to \mu\mu$, GMSB with N=1 and $M \lesssim 10^{10}$ GeV is ruled out, and any GMSB model with $\tan \beta \lesssim 50$ is ruled out.

AMSB:

- Back et al find AMSB models also ruled out by $B \to \mu\mu$ observation in Run II.
- Our calculation for AMSB not done, but early results contradict this. Difference is probably in details of the $b \to s\gamma$ calculation which acts as important constraint in AMSB models.

Flavor-Changing Neutral Currents in the quark sector are "morally equivalent" to charged Lepton Flavor Violation (LFV) in the lepton sector.

- We know ν FV exists (ν -oscillations) but in SM this shows up in charged leptons suppressed by $(m_{\nu}/M_W)^n$. Way small!
- In SUSY, charged slepton flavor violation easier to arrange: can be encoded in non-diagonal slepton masses. If $\tilde{L}FV$ is O(1), LFV is only suppressed by $(m_{\ell}/m_{\tilde{\ell}})^n$.
- But lack of large FCNC's in quarks probably implies mass universalities that probably apply to sleptons too.
- Let's assume that ν 's get mass through a seesaw with a heavy ν_R $(M_R \sim 10^{14-15}\,{\rm GeV})$ and at least one $y_\nu \sim O(1)$
- Mass non-universality in squarks sneaks back in through RGE's and the large y_t .
- Mass non-universality in sleptons sneaks back in through RGE's and the large y_{ν} . BUT only at $Q^2 > M_R^2$!
- Well-known in $\tau \to \mu \gamma$. Does it generate Higgs-mediated LFV?

gluine

Reminder of $\tau \to \mu \gamma$: (just like density piece in $b \to s \gamma$)

HISANO + many

Where does the $\Delta m_{\tilde{\ell}}^2$ come from?

$$\frac{d}{d\log Q} \left(m_{\tilde{\ell}}^2\right)_{ij} = \left(\frac{d}{d\log Q} \left(m_{\tilde{\ell}}^2\right)_{ij}\right)_{\text{MSSM}}^{\text{MSSM}} \\ + \frac{1}{16\pi^2} \left[m_{\tilde{\ell}}^2 Y_{\nu}^{\dagger} Y_{\nu} + Y_{\nu}^{\dagger} Y_{\nu} m_{\tilde{\ell}}^2 \right. \\ \left. + 2 \left(Y_{\nu}^{\dagger} m_{\tilde{\nu}_R}^2 Y_{\nu} + m_{H_u}^2 Y_{\nu}^{\dagger} Y_{\nu} + A_{\nu}^{\dagger} A_{\nu}\right)\right]_{ij}$$

So, mass insertion is:

So, mass insertion is:
$$\left(\Delta m_{\tilde{\ell}}^2\right)_{ij} \simeq -\frac{\log(M/M_R)}{16\pi^2} \left(6m_0^2 (Y_{\nu}^{\dagger} Y_{\nu})_{ij} + 2\left(A_{\nu}^{\dagger} A_{\nu}\right)_{ij}\right) \equiv \xi \left(Y_{\nu}^{\dagger} Y_{\nu}\right)_{ij}$$

where

$$\xi = -\frac{\log(M/M_R)}{16\pi^2} (6 + 2a^2) m_0^2.$$

What is M?

Worst case: M_{GUT} .

Best case: $M_{\rm Pl} \implies \log(M/M_R) \simeq 10$.

$$\mathrm{Br}(\ell_i \to \ell_j \gamma) \propto (Y_{\nu}^{\dagger} Y_{\nu})_{ij}$$

What do we know about Y_{ν} ??
With large mixing in 2-3 and 1-2, "most popular" ansatz for mass is

$$m_
u \propto \left(egin{array}{cccc} |\epsilon| & \epsilon & \epsilon \ |\epsilon| & 1 & 1 \ |\epsilon| & 1 & 1 \end{array}
ight)$$

- If $M_R \propto 1$, then $m_{\nu} \propto Y_{\nu}^{\dagger} \chi$
- If $M_R \simeq 10^{14}$ GeV, then $(Y_{\nu})_{33} \simeq 1$
- In many GUTs, predict $(Y_{\nu})_{33} \simeq y_t \sim 1$

Another option: inverted hierarchy ansatz

$$m_
u \propto \left(egin{array}{ccc} \epsilon & 1 & 1 \ 1 & \epsilon & \epsilon \ 1 & \epsilon & \epsilon \end{array}
ight)$$

(More on this later...)

HIGGS-MEDIATED LEPTON FLAVOR CHANGING

Write an effective Lagrangian: (DUST LIKE BAYEN)

$$\mathcal{L} = \overline{E}_R Y_E E_L H_d^0 + \overline{E}_R Y_E \left(\epsilon_1 1 + \epsilon_2 Y_{\nu}^{\dagger} Y_{\nu} \right) E_L H_u^{0*} + h.c.$$

At low scale, no explicit Y_{ν} can appear since $M_R \gg M_{\rm SUSY}$, but can appear as log-enhanced $\Delta m_{\tilde{\ell}}$ mass insertion.

$$\begin{array}{c} E_{L} \\ E_{L} \\ E_{R} \\$$

where

$$f_2(a, a, a, a) = \frac{1}{6a^2}, \qquad f_2(a, b, b, b)|_{b \ll a} \simeq \frac{1}{2ab}$$

FLAVOR-CHANGING TAU DECAYS

Some algebra takes us to effective Lagrangian for LFV Higgs couplings:

$$-\mathcal{L} \simeq (2G_F^2)^{1/4} rac{m_ au \kappa_{32}}{\cos^2 eta} \left(\overline{ au}_R \mu_L
ight) \left[\cos(eta - lpha) h^0 - \sin(eta - lpha) H^0 - i A^0
ight]$$

where

$$\kappa_{ij} = -\frac{\epsilon_2}{\left[1 + (\epsilon_1 + \epsilon_2 (Y_\nu^\dagger Y_\nu)_{33}) \tan\beta\right]^2} \begin{pmatrix} Y_\nu^\dagger Y_\nu \end{pmatrix}_{ij} \frac{1 - \log p}{\text{auantity}}$$

$$(2 \log ps \ w)$$
A LARGE COG

(Lagrangian for $(\overline{\tau}_R e_L)$ -Higgs derived by $\kappa_{32} \to \kappa_{31}$)

Then $\tau \to 3\mu$:

(in large m_A limit where $\alpha \to \beta - \pi/2$).

For $\mu = M_1 = M_2 = m_{\tilde{\ell}} = m_{\tilde{\nu}}$, $M_{R}^{\uparrow \downarrow} = 10^{14} \,\text{GeV}$ and $(Y_{\nu}^{\dagger} Y_{\nu})_{32} = 1$: then

$$\implies \epsilon_2 \simeq 4 \times 10^{-4}$$

and

$$\operatorname{Br}(\tau \to 3\mu) = (1 \times 10^{-7}) \times \left(\frac{\tan \vec{\beta}}{m_A}\right)^6 \times \left(\frac{100 \, \mathrm{GeV}}{m_A}\right)^4$$

Since B-factories are also τ -factories, BaBar and Belle should be probing the applicable range over the next couple years. LHC and SuperKEKB will have more than $10^9 \tau$'s.

$$\gamma_{\nu}^{\dagger}\gamma_{\nu} \propto \begin{pmatrix} \epsilon & 1 \\ 1 & \epsilon & \epsilon \\ 1 & \epsilon & \epsilon \end{pmatrix}$$

For inverted hierarchy ansatz, $\tau \to 3\mu$ is tiny but now $\tau \to e\mu\mu$ can be large thanks to large $(Y_{\nu}^{\dagger}Y_{\nu})_{13}$.

Can also observe $\mu \to 3e$ (despite tiny electron Yukawa!):

$$\mathrm{Br}(\mu \to 3e) = (5 \times 10^{-14}) \times \left(\frac{\tan\beta}{60}\right)^6 \times \left(\frac{100\,\mathrm{GeV}}{m_A}\right)^4 \times \left(Y_\nu^\dagger Y_\nu\right)_{21}^2$$

But from $\mu \to e\gamma$ already known that (roughly)

$$(Y_{
u}^{\dagger}Y_{
u})_{21}\lesssim 10^{-2} imes \left(rac{m_{ ilde{\mu}}}{100\,{
m GeV}}
ight)^2$$
 makes it worder !

But if observed, may be ONLY way to reconstruct electron Yukawa coupling.

 $\tau \to 3\mu$ and $\mu \to 3e$ can also occur with Higgs mediation — take photon off-shell in $\tau \to \mu \gamma$ or $\mu \to e \gamma$:

$$\frac{\operatorname{Br}(\tau \to 3\mu)}{\operatorname{Br}(\tau \to \mu\gamma)} \simeq 0.003, \qquad \frac{\operatorname{Br}(\mu \to 3e)}{\operatorname{Br}(\mu \to e\gamma)} \simeq 0.006$$

Any significant deviation from these ratios would be sign of new physics beyond canonical SUSY sources \Longrightarrow Higgs mediation!

Lessons from $\tau \to 3\mu$ and related rare LFVs:

- Lots of information about ν -Yukawa and ν_R Majorana mass matrices encoded into BR's. May be hard to decipher but many models could be ruled out with even a single observed rare decay.
- SUSY masses entering calculation are generally simple to measure directly (slepton & gaugino masses, μ -term, $\tan \beta$) so calculation can be compared easily and $\xi \propto Y_{\nu}^{\dagger} Y_{\nu}$ extracted.
- One should expect a (model-dependent) correlation between these processes and $(g-2)_{\mu}$ and perhaps $b \to s\gamma$. And of course $\tau \to \mu \gamma$ and $\mu \to e\gamma$.
 - Like $B \to \mu\mu$, observation would probably rule out low-scale gauge-mediation (or low-scale mediation of any sort). Requires high-scale mediation but otherwise has little apparent dependence on the type of model (mSUGRA vs. AMSB, for example)
- These are (unique?) windows on the Yukawa coupling of the light leptons and even the neutrinos.